
NAG C Library Function Document

nag_dsyevd (f08fcc)

1 Purpose

nag_dsyevd (f08fcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix. If the eigenvectors are requested, then it uses a divide and conquer algorithm to compute
eigenvalues and eigenvectors. However, if only eigenvalues are required, then it uses the
Pal–Walker–Kahan variant of the QL or QR algorithm.

2 Specification

void nag_dsyevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, double a[], Integer pda, double w[], NagError *fail)

3 Description

nag_dsyevd (f08fcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix A. In other words, it can compute the spectral factorization of A as

A ¼ Z�ZT ;

where � is a diagonal matrix whose diagonal elements are the eigenvalues �i, and Z is the orthogonal
matrix whose columns are the eigenvectors zi. Thus

Azi ¼ �izi; i ¼ 1; 2; . . . ; n:

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: job – Nag_JobType Input

On entry: indicates whether eigenvectors are computed as follows:

if job ¼ Nag DoNothing, only eigenvalues are computed;

if job ¼ Nag EigVecs, eigenvalues and eigenvectors are computed.

Constraint: job ¼ Nag DoNothing or Nag EigVecs.

3: uplo – Nag_UploType Input

On entry: indicates whether the upper or lower triangular part of A is stored as follows:

if uplo ¼ Nag Upper, the upper triangular part of A is stored;

if uplo ¼ Nag Lower, the lower triangular part of A is stored.

Constraint: uplo ¼ Nag Upper or Nag Lower.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fcc

[NP3645/7] f08fcc.1

4: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

5: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: the n by n symmetric matrix A. If uplo ¼ Nag Upper, the upper triangular part of A
must be stored and the elements of the array below the diagonal are not referenced; if
uplo ¼ Nag Lower, the lower triangular part of A must be stored and the elements of the array
above the diagonal are not referenced.

On exit: if job ¼ Nag EigVecs, this is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

7: w½dim� – double Output

Note: the dimension, dim, of the array w must be at least maxð1; nÞ.
On exit: the eigenvalues of the matrix A in ascending order.

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_CONVERGENCE

The algorithm failed to converge, hvaluei elements of an intermediate tridiagonal form did not
converge to zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

f08fcc NAG C Library Manual

f08fcc.2 [NP3645/7]

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed eigenvalues and eigenvectors are exact for a nearby matrix Aþ E, where

kEk2 ¼ Oð�ÞkAk2;

and � is the machine precision.

8 Further Comments

The complex analogue of this function is nag_zheevd (f08fqc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric matrix A, where

A ¼

1:0 2:0 3:0 4:0
2:0 2:0 3:0 4:0
3:0 3:0 3:0 4:0
4:0 4:0 4:0 4:0

1
CCA

0
BB@ :

9.1 Program Text

/* nag_dsyevd (f08fcc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char[2];
double *a=0, *w=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08fcc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fcc

[NP3645/7] f08fcc.3

Vscanf("%ld%*[^\n] ", &n);
pda = n;
w_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(w = NAG_ALLOC(w_len, double)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read whether Upper or Lower part of A is stored */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf("%lf", &A(i,j));

}
Vscanf("%*[^\n] ");

}
/* Read type of job to be performed */
Vscanf(" ’ %1s ’%*[^\n] ", job_char);
if (*(unsigned char *)job_char == ’V’)

job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A */
f08fcc(order, job, uplo, n, a, pda, w, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08fcc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf("Eigenvalues\n");
for (i = 0; i < n; ++i)

Vprintf(" %8.4lf",w[i]);
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, a, pda,

"Eigenvectors", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:

f08fcc NAG C Library Manual

f08fcc.4 [NP3645/7]

if (a) NAG_FREE(a);
if (w) NAG_FREE(w);
return exit_status;

}

9.2 Program Data

F08FCC Example Program Data
4 :Value of N
’L’ :Value of UPLO
1.0
2.0 2.0
3.0 3.0 3.0
4.0 4.0 4.0 4.0 :End of matrix A
’V’ :Value of JOB

9.3 Program Results

f08fcc Example Program Results

Eigenvalues
-2.0531 -0.5146 -0.2943 12.8621

Eigenvectors
1 2 3 4

1 0.7003 -0.5144 -0.2767 -0.4103
2 0.3592 0.4851 0.6634 -0.4422
3 -0.1569 0.5420 -0.6504 -0.5085
4 -0.5965 -0.4543 0.2457 -0.6144

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08fcc

[NP3645/7] f08fcc.5 (last)

	f08fcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	uplo
	n
	a
	pda
	w
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

